Basic Terms in Statistics

Nguyen Thi Tu Van - Nguyen Quang Vinh August 16, 2016

Statistics

Descriptive statistics

- Organize data
- Summarize data

Inferential statistics

(drawing of inferences from sample → population)

- Estimation
- Hypothesis testing reaching a decision:
 - Parametric tests
 - Non-parametric tests (distribution-free)
- Modeling, Predicting

- Understand medical articles & Use information of published medical evidence.
 - \rightarrow \rightarrow Have better choice / given situation.
- Be able to communicate with a statistical consultant.

Estimation

Estimation – A point estimate

- Population Sample
- A parameter may be estimated by more than one estimator:

Example:

- Sample mean \rightarrow estimate population mean
- Sample median \rightarrow estimate population mean

Confidence interval for a population mean

In general, an interval estimate is obtained by the formula estimator ± (reliability coefficient) x (standard error)

In particular: $\bar{x} \pm z_{\alpha/2} \sigma_{\bar{x}}$ or $\bar{x} \pm t_{\alpha/2} S.E.$

How to interpret the interval given by this expression

- In repeated sampling 100(1- α)% of all intervals of the form will in the long run include the population mean, μ .
- The quantity 1 α , is called the *confidence coefficient*, &

The interval $\overline{x}\pm z_{\alpha/2}\sigma_{\overline{x}}$, is called the confidence interval for μ .

The practical interpretation

• We are 100(1 - α)% confident that the single computed interval

$$\overline{x} \pm z_{\alpha/2} \sigma_{\overline{x}}$$

contains the population mean, μ

• E = margin error = maximum error = practical / clinical acceptable error:

$$E = z_{\alpha/2}\sigma_{\bar{x}} = z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

Hypothesis Testing

Reaching a decision concerning a population by examining a sample from that population.

ć

Hypothesis

Two types of hypotheses:

(1) Research Hypotheses:

- The conjecture or supposition.
- The results of years of observation.
- Research H. leads directly to Statistical H.

(2) Statistical Hypotheses:

Hypotheses are stated in such a way that they may be evaluated by appropriate statistical techniques.

Statistical Hypotheses

- Hypothesis to be tested = Null H = H_0 = H of no difference.
- If H_o is not rejected, we will say that the data on which the test is based do not provide sufficient evidence to cause rejection.
- If the testing process leads to rejection, we will say that the data at hand are not compatible with the H_o , but are supportive of some other hypothesis & may be designated by H_{Δ} .
- H_A: a contradiction statement of H_O (complementary).

1

Test Statistic

Decision maker: reject or not to reject the H_o depends on the *magnitude* of the test statistic

Test Statistic \rightarrow p value

Conditions under which type I & type II errors may be committed (the four possibilities)		Actual Situation (Truth in the population)	
		H _o false	H _o true
The results in the study sample → Conclusion:	Reject H _o	Correct decision	Type I error
	Fail to reject H _o	Type II error	Correct decision

4

One-sided vs. Two-sided Hypothesis Test

Ho: $\mu 1 - \mu 2 = 0$, HA: $\mu 1 - \mu 2 \neq 0$

Ho: $\mu 1 - \mu 2 \ge 0$, HA: $\mu 1 - \mu 2 < 0$

Ho: $\mu 1 - \mu 2 \le 0$, HA: $\mu 1 - \mu 2 > 0$

The Power of a Statistical Test

- We can not know the power of a test until the study is complete.
- The power of test should be considered when an opportunity to reject the H_o correctly was lost.

15