Basic Terms in Statistics Nguyen Thi Tu Van - Nguyen Quang Vinh August 16, 2016 ### **Statistics** ### Descriptive statistics - Organize data - Summarize data ### Inferential statistics (drawing of inferences from sample → population) - Estimation - Hypothesis testing reaching a decision: - Parametric tests - Non-parametric tests (distribution-free) - Modeling, Predicting - Understand medical articles & Use information of published medical evidence. - \rightarrow \rightarrow Have better choice / given situation. - Be able to communicate with a statistical consultant. # **Estimation** ### Estimation – A point estimate - Population Sample - A parameter may be estimated by more than one estimator: #### Example: - Sample mean \rightarrow estimate population mean - Sample median \rightarrow estimate population mean ## Confidence interval for a population mean In general, an interval estimate is obtained by the formula estimator ± (reliability coefficient) x (standard error) In particular: $\bar{x} \pm z_{\alpha/2} \sigma_{\bar{x}}$ or $\bar{x} \pm t_{\alpha/2} S.E.$ ## How to interpret the interval given by this expression - In repeated sampling 100(1- α)% of all intervals of the form will in the long run include the population mean, μ . - The quantity 1 α , is called the *confidence coefficient*, & The interval $\overline{x}\pm z_{\alpha/2}\sigma_{\overline{x}}$, is called the confidence interval for μ . ## The practical interpretation • We are 100(1 - α)% confident that the single computed interval $$\overline{x} \pm z_{\alpha/2} \sigma_{\overline{x}}$$ contains the population mean, μ • E = margin error = maximum error = practical / clinical acceptable error: $$E = z_{\alpha/2}\sigma_{\bar{x}} = z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$ ## **Hypothesis Testing** Reaching a decision concerning a population by examining a sample from that population. ć ## **Hypothesis** #### Two types of hypotheses: ### (1) Research Hypotheses: - The conjecture or supposition. - The results of years of observation. - Research H. leads directly to Statistical H. ### (2) Statistical Hypotheses: Hypotheses are stated in such a way that they may be evaluated by appropriate statistical techniques. ## Statistical Hypotheses - Hypothesis to be tested = Null H = H_0 = H of no difference. - If H_o is not rejected, we will say that the data on which the test is based do not provide sufficient evidence to cause rejection. - If the testing process leads to rejection, we will say that the data at hand are not compatible with the H_o , but are supportive of some other hypothesis & may be designated by H_{Δ} . - H_A: a contradiction statement of H_O (complementary). 1 ### Test Statistic Decision maker: reject or not to reject the H_o depends on the *magnitude* of the test statistic Test Statistic \rightarrow p value | Conditions under which type I & type II errors may be committed (the four possibilities) | | Actual Situation (Truth in the population) | | |--|-------------------------------|--|---------------------| | | | H _o false | H _o true | | The results in the study sample → Conclusion: | Reject
H _o | Correct
decision | Type I
error | | | Fail to reject H _o | Type II
error | Correct
decision | 4 ## One-sided vs. Two-sided Hypothesis Test Ho: $\mu 1 - \mu 2 = 0$, HA: $\mu 1 - \mu 2 \neq 0$ Ho: $\mu 1 - \mu 2 \ge 0$, HA: $\mu 1 - \mu 2 < 0$ Ho: $\mu 1 - \mu 2 \le 0$, HA: $\mu 1 - \mu 2 > 0$ ## The Power of a Statistical Test - We can not know the power of a test until the study is complete. - The power of test should be considered when an opportunity to reject the H_o correctly was lost. 15